加入收藏 | 设为首页 | 会员中心 | 我要投稿 财气旺网 - 财气网 (https://www.caiqiwang.com/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 服务器 > 搭建环境 > Linux > 正文

linux线程暂停的外部实现,Linux停简单线程池的实现

发布时间:2022-11-25 12:52:31 所属栏目:Linux 来源:
导读:  大多数的网络服务器,包括Web服务器都具有一个特点,就是单位时间内必须处理数目巨大的连接请求,但是处理时间却是比较短的。在传统的多线程服务器模型中是这样实现的:一旦有个服务请求到达,就创建一个新的服务
  大多数的网络服务器,包括Web服务器都具有一个特点,就是单位时间内必须处理数目巨大的连接请求,但是处理时间却是比较短的。在传统的多线程服务器模型中是这样实现的:一旦有个服务请求到达,就创建一个新的服务线程线程池linux,由该线程执行任务,任务执行完毕之后,线程就退出。这就是"即时创建,即时销毁"的策略。尽管与创建进程相比,创建线程的时间已经大大的缩短,但是如果提交给线程的任务是执行时间较短,而且执行次数非常频繁,那么服务器就将处于一个不停的创建线程和销毁线程的状态。这笔开销是不可忽略的,尤其是线程执行的时间非常非常短的情况。
 
  线程池就是为了解决上述问题的,它的实现原理是这样的:在应用程序启动之后,就马上创建一定数量的线程,放入空闲的队列中。这些线程都是处于阻塞状态,这些线程只占一点内存,不占用CPU。当任务到来后,线程池将选择一个空闲的线程,将任务传入此线程中运行。当所有的线程都处在处理任务的时候,线程池将自动创建一定的数量的新线程,用于处理更多的任务。执行任务完成之后线程并不退出,而是继续在线程池中等待下一次任务。当大部分线程处于阻塞状态时,线程池将自动销毁一部分的线程,回收系统资源,Linux系统的一个进程最多支持2024个线程。
 
  什么时候需要创建线程池呢?简单的说,如果一个应用需要频繁的创建和销毁线程,而任务执行的时间又非常短,这样线程创建和销毁的带来的开销就不容忽视,这时也是线程池该出场的机会了。如果线程创建和销毁时间相比任务执行时间可以忽略不计,则没有必要使用线程池了。
 
  下面是Linux系统下用C语言创建的一个简单线程池,这个线程池的代码是我参考网上的一个例子实现的,由于找不到出处了,就没办法注明参考自哪里了。它的方案是这样的:程序启动之前,初始化线程池,启动线程池中的线程,由于还没有任务到来,线程池中的所有线程都处在阻塞状态,当一有任务到达就从线程池中取出一个空闲线程处理,如果所有的线程都处于工作状态,就添加到队列,进行排队。如果队列中的任务个数大于队列的所能容纳的最大数量,那就不能添加任务到队列中,只能等待队列不满才能添加任务到队列中。
 
  主要由两个文件组成一个threadpool.h头文件和一个threadpool.c源文件组成。源码中已有重要的注释,就不加以分析了。
 
  threadpool.h文件:
 
  struct job
 
  {
 
  void* (*callback_function)(void *arg); //线程回调函数
 
  void *arg; //回调函数参数
 
  struct job *next;
 
  };
 
  struct threadpool
 
  {
 
  int thread_num; //线程池中开启线程的个数
 
  int queue_max_num; //队列中最大job的个数
 
  struct job *head; //指向job的头指针
 
  struct job *tail; //指向job的尾指针
 
  pthread_t *pthreads; //线程池中所有线程的pthread_t
 
  pthread_mutex_t mutex; //互斥信号量
 
  pthread_cond_t queue_empty; //队列为空的条件变量
 
  pthread_cond_t queue_not_empty; //队列不为空的条件变量
 
  pthread_cond_t queue_not_full; //队列不为满的条件变量
 
  int queue_cur_num; //队列当前的job个数
 
  int queue_close; //队列是否已经关闭
 
  int pool_close; //线程池是否已经关闭
 
  };
 
  //================================================================================================
 
  //函数名: threadpool_init
 
  //函数描述: 初始化线程池
 
  //输入: [in] thread_num 线程池开启的线程个数
 
  // [in] queue_max_num 队列的最大job个数
 
  //输出: 无
 
  //返回: 成功:线程池地址 失败:NULL
 
  //================================================================================================
 
  struct threadpool* threadpool_init(int thread_num, int queue_max_num);
 
  //================================================================================================
 
  //函数名: threadpool_add_job
 
  //函数描述: 向线程池中添加任务
 
  //输入: [in] pool 线程池地址
 
  // [in] callback_function 回调函数
 
  // [in] arg 回调函数参数
 
  //输出: 无
 
  //返回: 成功:0 失败:-1
 
  //================================================================================================
 
  int threadpool_add_job(struct threadpool *pool, void* (*callback_function)(void *arg), void *arg);
 
  //================================================================================================
 
  //函数名: threadpool_destroy
 
  //函数描述: 销毁线程池
 
  //输入: [in] pool 线程池地址
 
  //输出: 无
 
  //返回: 成功:0 失败:-1
 
  //================================================================================================
 
  int threadpool_destroy(struct threadpool *pool);
 
  //================================================================================================
 
  //函数名: threadpool_function
 
  //函数描述: 线程池中线程函数
 
  //输入: [in] arg 线程池地址
 
  //输出: 无
 
  //返回: 无
 
  //================================================================================================
 
  void* threadpool_function(void* arg);
 
  threadpool.c文件:
 
  #include "threadpool.h"
 
  struct threadpool* threadpool_init(int thread_num, int queue_max_num)
 
  {
 
  struct threadpool *pool = NULL;
 
  do
 
  {
 
  pool = malloc(sizeof(struct threadpool));
 
  if (NULL == pool)
 
  {
 
  printf("failed to malloc threadpool!\n");
 
  break;
 
  }
 
  pool->thread_num = thread_num;
 
  pool->queue_max_num = queue_max_num;
 
  pool->queue_cur_num = 0;
 
  pool->head = NULL;
 
  pool->tail = NULL;
 
  if (pthread_mutex_init(&(pool->mutex), NULL))
 
  {
 
  printf("failed to init mutex!\n");
 
  break;
 
  }
 
  if (pthread_cond_init(&(pool->queue_empty), NULL))
 
  {
 
  printf("failed to init queue_empty!\n");
 
  break;
 
  }
 
  if (pthread_cond_init(&(pool->queue_not_empty), NULL))
 
  {
 
  printf("failed to init queue_not_empty!\n");
 
  break;
 
  }
 
  if (pthread_cond_init(&(pool->queue_not_full), NULL))
 
  {
 
  printf("failed to init queue_not_full!\n");
 
  break;
 
  }
 
  pool->pthreads = malloc(sizeof(pthread_t) * thread_num);
 
  if (NULL == pool->pthreads)
 
  {
 
  printf("failed to malloc pthreads!\n");
 
  break;
 
  }
 
  pool->queue_close = 0;
 
  pool->pool_close = 0;
 
  int i;
 
  for (i = 0; i < pool->thread_num; ++i)
 
  {
 
  pthread_create(&(pool->pthreads[i]), NULL, threadpool_function, (void *)pool);
 
  }
 
  return pool;
 
  } while (0);
 
  return NULL;
 
  }
 
  int threadpool_add_job(struct threadpool* pool, void* (*callback_function)(void *arg), void *arg)
 
  {
 
  assert(pool != NULL);
 
  assert(callback_function != NULL);
 
  assert(arg != NULL);
 
  pthread_mutex_lock(&(pool->mutex));
 
  while ((pool->queue_cur_num == pool->queue_max_num) && !(pool->queue_close || pool->pool_close))
 
  {
 
  pthread_cond_wait(&(pool->queue_not_full), &(pool->mutex)); //队列满的时候就等待
 
  }
 
  if (pool->queue_close || pool->pool_close) //队列关闭或者线程池关闭就退出
 
  {
 
  pthread_mutex_unlock(&(pool->mutex));
 
  return -1;
 
  }
 
  struct job *pjob =(struct job*) malloc(sizeof(struct job));
 
  if (NULL == pjob)
 
  {
 
  pthread_mutex_unlock(&(pool->mutex));
 
  return -1;
 
  }
 
  pjob->callback_function = callback_function;
 
  pjob->arg = arg;
 
  pjob->next = NULL;
 
  if (pool->head == NULL)
 
  {
 
  pool->head = pool->tail = pjob;
 
  pthread_cond_broadcast(&(pool->queue_not_empty)); //队列空的时候,有任务来时就通知线程池中的线程:队列非空
 
  }
 
  else
 
  {
 
  pool->tail->next = pjob;
 
  pool->tail = pjob;
 
  }
 
  pool->queue_cur_num++;
 
  pthread_mutex_unlock(&(pool->mutex));
 
  return 0;
 
  }
 
  void* threadpool_function(void* arg)
 
  {
 
  struct threadpool *pool = (struct threadpool*)arg;
 
  struct job *pjob = NULL;
 
  while (1) //死循环
 
  {
 
  pthread_mutex_lock(&(pool->mutex));
 
  while ((pool->queue_cur_num == 0) && !pool->pool_close) //队列为空时,就等待队列非空
 
  {
 
  pthread_cond_wait(&(pool->queue_not_empty), &(pool->mutex));
 
  }
 
  if (pool->pool_close) //线程池关闭,线程就退出
 
  {
 
  pthread_mutex_unlock(&(pool->mutex));
 
  pthread_exit(NULL);
 
  }
 
  pool->queue_cur_num--;
 
  pjob = pool->head;
 
  if (pool->queue_cur_num == 0)
 
  {
 
  pool->head = pool->tail = NULL;
 
  }
 
  else
 
  {
 
  pool->head = pjob->next;
 
  }
 
  if (pool->queue_cur_num == 0)
 
  {
 
  pthread_cond_signal(&(pool->queue_empty)); //队列为空,就可以通知threadpool_destroy函数,销毁线程函数
 
  }
 
  if (pool->queue_cur_num == pool->queue_max_num - 1)
 
  {
 
  pthread_cond_broadcast(&(pool->queue_not_full)); //队列非满,就可以通知threadpool_add_job函数,添加新任务
 
  }
 
  pthread_mutex_unlock(&(pool->mutex));
 
  (*(pjob->callback_function))(pjob->arg); //线程真正要做的工作,回调函数的调用
 
  free(pjob);
 
  pjob = NULL;
 
  }
 
  }
 
  int threadpool_destroy(struct threadpool *pool)
 
  {
 
  assert(pool != NULL);
 
  pthread_mutex_lock(&(pool->mutex));
 
  if (pool->queue_close || pool->pool_close) //线程池已经退出了,就直接返回
 
  {
 
  pthread_mutex_unlock(&(pool->mutex));
 
  return -1;
 
  }
 
  pool->queue_close = 1; //置队列关闭标志
 
  while (pool->queue_cur_num != 0)
 
  {
 
  pthread_cond_wait(&(pool->queue_empty), &(pool->mutex)); //等待队列为空
 
  }
 
  pool->pool_close = 1; //置线程池关闭标志
 
  pthread_mutex_unlock(&(pool->mutex));
 
  pthread_cond_broadcast(&(pool->queue_not_empty));//唤醒线程池中正在阻塞的线程
 
  pthread_cond_broadcast(&(pool->queue_not_full)); //唤醒添加任务的threadpool_add_job函数
 
  int i;
 
  for (i = 0; i < pool->thread_num; ++i)
 
  {
 
  pthread_join(pool->pthreads[i], NULL); //等待线程池的所有线程执行完毕
 
  }
 
  pthread_mutex_destroy(&(pool->mutex)); //清理资源
 
  pthread_cond_destroy(&(pool->queue_empty));
 
  pthread_cond_destroy(&(pool->queue_not_empty));
 
  pthread_cond_destroy(&(pool->queue_not_full));
 
  free(pool->pthreads);
 
  struct job *p;
 
  while (pool->head != NULL)
 
  {
 
  p = pool->head;
 
  pool->head = p->next;
 
  free(p);
 
  }
 
  free(pool);
 
  return 0;
 
  }
 
  测试文件main.c文件:
 
  #include "threadpool.h"
 
  void* work(void* arg)
 
  {
 
  char *p = (char*) arg;
 
  printf("threadpool callback fuction : %s.\n", p);
 
  sleep(1);
 
  }
 
  int main(void)
 
  {
 
  struct threadpool *pool = threadpool_init(10, 20);
 
  threadpool_add_job(pool, work, "1");
 
  threadpool_add_job(pool, work, "2");
 
  threadpool_add_job(pool, work, "3");
 
  threadpool_add_job(pool, work, "4");
 
  threadpool_add_job(pool, work, "5");
 
  threadpool_add_job(pool, work, "6");
 
  threadpool_add_job(pool, work, "7");
 
  threadpool_add_job(pool, work, "8");
 
  threadpool_add_job(pool, work, "9");
 
  threadpool_add_job(pool, work, "10");
 
  threadpool_add_job(pool, work, "11");
 
  threadpool_add_job(pool, work, "12");
 
  threadpool_add_job(pool, work, "13");
 
  threadpool_add_job(pool, work, "14");
 
  threadpool_add_job(pool, work, "15");
 
  threadpool_add_job(pool, work, "16");
 
  threadpool_add_job(pool, work, "17");
 
  threadpool_add_job(pool, work, "18");
 
  threadpool_add_job(pool, work, "19");
 
  threadpool_add_job(pool, work, "20");
 
  threadpool_add_job(pool, work, "21");
 
  threadpool_add_job(pool, work, "22");
 
  threadpool_add_job(pool, work, "23");
 
  threadpool_add_job(pool, work, "24");
 
  threadpool_add_job(pool, work, "25");
 
  threadpool_add_job(pool, work, "26");
 
  threadpool_add_job(pool, work, "27");
 
  threadpool_add_job(pool, work, "28");
 
  threadpool_add_job(pool, work, "29");
 
  threadpool_add_job(pool, work, "30");
 
  threadpool_add_job(pool, work, "31");
 
  threadpool_add_job(pool, work, "32");
 
  threadpool_add_job(pool, work, "33");
 
  threadpool_add_job(pool, work, "34");
 
  threadpool_add_job(pool, work, "35");
 
  threadpool_add_job(pool, work, "36");
 
  threadpool_add_job(pool, work, "37");
 
  threadpool_add_job(pool, work, "38");
 
  threadpool_add_job(pool, work, "39");
 
  threadpool_add_job(pool, work, "40");
 
  sleep(5);
 
  threadpool_destroy(pool);
 
  return 0;
 
  }
 
  用gcc编译,运行就可以看到效果,1到40个回调函数分别被执行。
 

(编辑:财气旺网 - 财气网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!